ادعوك لزيارة قناتي على اليوتيوب أذا أعجبتك لا تنسى الأشتراك بالقناة
تابع قناتنا على يوتيوب. الدخول من هنا الأشتراك في القناة

Intracellular Components

Intracellular Components

Plasma (Cytoplasmic) Membranes

Bacterial plasma membranes, the functional equivalents of eukaryotic plasma membranes, are referred to variously as cytoplasmic, protoplast, or (in Gram-negative organisms) inner membranes. Similar in overall dimensions and appearance in thin sections to biomembranes from eukaryotic cells, they are composed primarily of proteins and lipids (principally phospholipids). Protein-to-lipid ratios of bacterial plasma membranes are approximately 3: 1, close to those for mitochondrial membranes. Unlike eukaryotic cell membranes, the bacterial membrane (except for Mycoplasma species and certain methylotrophic bacteria) has no sterols, and bacteria lack the enzymes required for sterol biosynthesis.
Although their composition is similar to that of inner membranes of Gram-negative species, cytoplasmic membranes from Gram-positive bacteria possess a class of macromolecules not present in the Gram-negative membranes. Many Gram-positive bacterial membranes contain membrane-bound lipoteichoic acid, and species lacking this component (such as Micrococcus and Sarcina spp.) contain an analogous membrane-bound succinylated lipomannan. Lipoteichoic acids are structurally similar to the cell wall glycerol teichoic acids in that they have basal polyglycerol phosphodiester 1-3 linked chains (Fig. 2-9). These chains terminate with the phosphomonoester end of the polymer, which is linked covalently to either a glycolipid or a phosphatidyl glycolipid moiety. Thus, a hydrophobic tail is provided for anchoring in the membrane lipid layers (Fig. 2-6A). As in the cell wall glycerol teichoic acid, the lipoteichoic acids can have glycosidic and D-alanyl ester substituents on the C-2 position of the glycerol.
Both membrane-bound lipoteichoic acid and membrane-bound succinylated lipomannan can be detected as antigens on the cell surface, and the glycerol-phosphate and succinylated mannan chains appear to extend through the cell wall structure (Fig. 2-6). This class of polymer has not yet been found in the cytoplasmic membranes of Gram-negative organisms. In both instances, the lipoteichoic acids and the lipomannans are negatively charged components and can sequester positively charged substances. They have been implicated in adhesion to host cells, but their functions remain to be elucidated.
Multiple functions are performed by the plasma membranes of both Gram-positive and Gram-negative bacteria. Plasma membranes are the site of active transport, respiratory chain components, energy-transducing systems, the H+-ATPase of the proton pump (see Chapter 4), and membrane stages in the biosynthesis of phospholipids, peptidoglycan, LPS, and capsular polysaccharides. In essence, the bacterial cytoplasmic membrane is a multifunction structure that combines the mitochondrial transport and biosynthetic functions that are usually compartmentalized in discrete membranous organelles in eukaryotic cells. The plasma membrane is also the anchoring site for DNA and provides the cell with a mechanism (as yet unknown) for separation of sister chromosomes.

Mesosomes

Thin sections of Gram-positive bacteria reveal the presence of vesicular or tubular-vesicular membrane structures called mesosomes, which are apparently formed by an invagination of the plasma membrane. These structures are much more prominent in Gram-positive than in Gram-negative organisms. At one time, the mesosomal vesicles were thought to be equivalent to bacterial mitochondria; however, many other membrane functions have also been attributed to the mesosomes. At present, there is no satisfactory evidence to suggest that they have a unique biochemical or physiologic function. Indeed, electron-microscopic studies have suggested that the mesosomes, as usually seen in thin sections, may arise from membrane perturbation and fixation artifacts. No general agreement exists about this theory, however, and some evidence indicates that mesosomes may be related to events in the cell division cycle.

Other Intracellular Components

In addition to the nucleoid and cytoplasm (cytosol), the intracellular compartment of the bacterial cell is densely packed with ribosomes of the 70S type (Fig. 2-2). These ribonucleoprotein particles, which have a diameter of 18 nm, are not arranged on a membranous rough endoplasmic reticulum as they are in eukaryotic cells. Other granular inclusions randomly distributed in the cytoplasm of various species include metabolic reserve particles such as poly-β-hydroxybutyrate (PHB), polysaccharide and glycogen-like granules, and polymetaphosphate or metachromatic granules.
Endospores are highly heat-resistant, dehydrated resting cells formed intracellularly in members of the genera Bacillus and Clostridium. Sporulation, the process of forming endospores, is an unusual property of certain bacteria. The series of biochemical and morphologic changes that occur during sporulation represent true differentiation within the cycle of the bacterial cell. The process, which usually begins in the stationary phase of the vegetative cell cycle, is initiated by depletion of nutrients (usually readily utilizable sources of carbon or nitrogen, or both). The cell then undergoes a highly complex, well-defined sequence of morphologic and biochemical events that ultimately lead to the formation of mature endospores. As many as seven distinct stages have been recognized by morphologic and biochemical studies of sporulating Bacillus species: stage 0, vegetative cells with two chromosomes at the end of exponential growth; stage I, formation of axial chromatin filament and excretion of exoenzymes, including proteases; stage II, forespore septum formation and segregation of nuclear material into two compartments; stage III, spore protoplast formation and elevation of tricarboxylic acid and glyoxylate cycle enzyme levels; stage IV, cortex formation and refractile appearance of spore; stage V, spore coat protein formation; stage VI, spore maturation, modification of cortical peptidoglycan, uptake of dipicolinic acid (a unique endospore product) and calcium, and development of resistance to heat and organic solvents; and stage VII, final maturation and liberation of endospores from mother cells (in some species).
When newly formed, endospores appear as round, highly refractile cells within the vegetative cell wall, or sporangium. Some strains produce autolysins that digest the walls and liberate free endospores. The spore protoplast, or core, contains a complete nucleus, ribosomes, and energy generating components that are enclosed within a modified cytoplasmic membrane. The peptidoglycan spore wall surrounds the spore membrane; on germination, this wall becomes the vegetative cell wall. Surrounding the spore wall is a thick cortex that contains an unusual type of peptidoglycan, which is rapidly released on germination. A spore coat of keratinlike protein encases the spore contained within a membrane (the exosporium). During maturation, the spore protoplast dehydrates and the spore becomes refractile and resistant to heat, radiation, pressure, desiccation, and chemicals; these properties correlate with the cortical peptidoglycan and the presence of large amounts of calcium dipicolinate.
Recent evidence indicated that the spores of Bacillus spharicus were revived which had been preserved in amber for more than 25 million years. Their claims need to be reevaluated. Figure 2-11 illustrates the principal structural features of a typical endospore (Bacillus megaterium) on initiation of the germination process. The thin section of the spore shows the ruptured, thick spore coat and the cortex surrounding the spore protoplast with the germinal cell wall that becomes the vegetative wall on outgrowth.
Figure 2-11. Electron micrograph of a thin section of a Bacillus megaterium spore showing the thick spore coat (SC), germinal groove (G) in the spore coat, outer cortex layer (OCL) and cortex (Cx) germinal cell wall layer (GCW), underlying spore protoplast membrane (PM), and regions where the nucleoid (n) is visible.

Figure 2-11

Electron micrograph of a thin section of a Bacillus megaterium spore showing the thick spore coat (SC), germinal groove (G) in the spore coat, outer cortex layer (OCL) and cortex (Cx) germinal cell wall layer (GCW), underlying spore protoplast membrane

Post a Comment

جميع الحقوق محفوظة © Lab Med تعريب وتطوير جيست ويب
// //