Some bacteria have both flagella and pili. The electron micrograph in Fig. 2-3 shows the characteristic wavy appearance of flagella and two types of pili on the surface of Escherichia coli.
Figure 2-3
(A) Electron micrograph of negatively stained E. coli showing wavy flagella and numerous short, thinner, and more rigid hairlike structures, the pili. (B) The long sex pilus can be distinguished from the shorter common pili by mixing E. coli cells with a male bacteriophage that binds specifically to sex pili.
Structurally, bacterial flagella are long (3 to 12 µm), filamentous surface appendages about 12 to 30 nm in diameter. The protein subunits of a flagellum are assembled to form a cylindrical structure with a hollow core. A flagellum consists of three parts: (1) the long filament, which lies external to the cell surface; (2) the hook structure at the end of the filament; and (3) the basal body, to which the hook is anchored and which imparts motion to the flagellum. The basal body traverses the outer wall and membrane structures. It consists of a rod and one or two pairs of discs. The thrust that propels the bacterial cell is provided by counterclockwise rotation of the basal body, which causes the helically twisted filament to whirl. The movement of the basal body is driven by a proton motive force rather than by ATP directly. The ability of bacteria to swim by means of the propeller-like action of the flagella provides them with the mechanical means to perform chemotaxis (movement in response to attractant and repellent substances in the environment). Response to chemical stimuli involves a sophisticated sensory system of receptors that are located in the cell surface and/or periplasm and that transmit information to methyl-accepting chemotaxis proteins that control the flagellar motor. Genetic studies have revealed the existence of mutants with altered biochemical pathways for flagellar motility and chemotaxis.
Chemically, flagella are constructed of a class of proteins called flagellins. The hook and basal-body structures consist of numerous proteins. Mutations affecting any of these gene products may result in loss or impairment of motility. Flagellins are immunogenic and constitute a group of protein antigens called the H antigens, which are characteristic of a given species, strain, or variant of an organism. The species specificity of the flagellins reflects differences in the primary structures of the proteins. Antigenic changes of the flagella known as the phase variation of H1 and H2 occurs in Salmonella typhimurium
The number and distribution of flagella on the bacterial surface are characteristic for a given species and hence are useful in identifying and classifying bacteria. Figure 2-4 illustrates typical arrangements of flagella on or around the bacterial surface. For example, V. cholerae has a single flagellum at one pole of the cell (i.e., it is monotrichous), whereas Proteus vulgaris and E. coli have many flagella distributed over the entire cell surface (i.e., they are peritrichous). The flagella of a peritrichous bacterium must aggregate as a posterior bundle to propel the cell in a forward direction.
Flagella can be sheared from the cell surface without affecting the viability of the cell. The cell then becomes temporarily nonmotile. In time it synthesizes new flagella and regains motility. The protein synthesis inhibitor chloramphenicol, however, blocks regeneration of flagella.
Chemically, flagella are constructed of a class of proteins called flagellins. The hook and basal-body structures consist of numerous proteins. Mutations affecting any of these gene products may result in loss or impairment of motility. Flagellins are immunogenic and constitute a group of protein antigens called the H antigens, which are characteristic of a given species, strain, or variant of an organism. The species specificity of the flagellins reflects differences in the primary structures of the proteins. Antigenic changes of the flagella known as the phase variation of H1 and H2 occurs in Salmonella typhimurium
The number and distribution of flagella on the bacterial surface are characteristic for a given species and hence are useful in identifying and classifying bacteria. Figure 2-4 illustrates typical arrangements of flagella on or around the bacterial surface. For example, V. cholerae has a single flagellum at one pole of the cell (i.e., it is monotrichous), whereas Proteus vulgaris and E. coli have many flagella distributed over the entire cell surface (i.e., they are peritrichous). The flagella of a peritrichous bacterium must aggregate as a posterior bundle to propel the cell in a forward direction.
Flagella can be sheared from the cell surface without affecting the viability of the cell. The cell then becomes temporarily nonmotile. In time it synthesizes new flagella and regains motility. The protein synthesis inhibitor chloramphenicol, however, blocks regeneration of flagella.
The terms pili and fimbriae are usually used interchangeably to describe the thin, hairlike appendages on the surface of many Gram-negative bacteria and proteins of pili are referred to as pilins. Pili are more rigid in appearance than flagella (Fig. 2-3). In some organisms, such as Shigella species and E. coli, pili are distributed profusely over the cell surface, with as many as 200 per cell. As is easily recognized in strains of E. coli, pili can come in two types: short, abundant common pili, and a small number (one to six) of very long pili known as sex pili. Sex pili can be distinguished by their ability to bind male-specific bacteriophages (the sex pilus acts as a specific receptor for these bacteriophages) (Fig. 2-3B). The sex pili attach male to female bacteria during conjugation.
Pili in many enteric bacteria confer adhesive properties on the bacterial cells, enabling them to adhere to various epithelial surfaces, to red blood cells (causing hemagglutination), and to surfaces of yeast and fungal cells. These adhesive properties of piliated cells play an important role in bacterial colonization of epithelial surfaces and are therefore referred to as colonization factors. The common pili found on E. coli exhibit a sugar specificity analogous to that of phytohemagglutinins and lectins, in that adhesion and hemagglutinating capacities of the organism are inhibited specifically by mannose. Organisms possessing this type of hemagglutination are called mannose-sensitive organisms. Other piliated organisms, such as gonococci, are adhesive and hemagglutinating, but are insensitive to the inhibitory effects of mannose. Extensive antigenic variations in pilins of gonococci are well known
Pili in many enteric bacteria confer adhesive properties on the bacterial cells, enabling them to adhere to various epithelial surfaces, to red blood cells (causing hemagglutination), and to surfaces of yeast and fungal cells. These adhesive properties of piliated cells play an important role in bacterial colonization of epithelial surfaces and are therefore referred to as colonization factors. The common pili found on E. coli exhibit a sugar specificity analogous to that of phytohemagglutinins and lectins, in that adhesion and hemagglutinating capacities of the organism are inhibited specifically by mannose. Organisms possessing this type of hemagglutination are called mannose-sensitive organisms. Other piliated organisms, such as gonococci, are adhesive and hemagglutinating, but are insensitive to the inhibitory effects of mannose. Extensive antigenic variations in pilins of gonococci are well known